
1 

3f 

i* 

CO 
Lß 
CO 
(XI 

E-i 

< 
U NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL NOTE 2656 

A BLADE-ELEMENT ANALYSIS FOR LIFTING ROTORS THAT IS 

APPLICABLE FOR LARGE INFLOW AND BLADE ANGLES AND 

ANY REASONABLE BLADE GEOMETRY 

/ 
By Walter Castles, Jr., and Noah C. New 

Georgia Institute of Technology 

tu <S"a 

So p^ 
2 0. c 

EaQ 

o 

Washington 

July 1952 

ZTF? ISiFSaSiL 4. 
Reproduced From 

Best Available Copy #fl/V)oo'/o<&r/ 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2656 

A BLADE-ELEMENT ANALYSIS FOR LIFTING ROTORS THAT IS 

APPLICABLE FOR LARGE INFLOW AND BLADE ANGLES AND 

ANY REASONABLE BLADE GEOMETRY 

By Walter Castles, Jr., and Noah C. New 

SUMMARY 

Simple approximate solutions are derived for the relationships 
between the rotor thrust and flight-path velocity components and the 
rotor blade angle, torque, and in-plane forces.  These approximate solu- 
tions, based upon the assumption of a triangular distribution of blade 
circulation and a parabolic variation of blade-element profile drag with 
lift, are sufficiently accurate for preliminary calculations and the 
determination of the equilibrium angle of attack and lateral tilt of the 
tip-path plane. 

A set of more exact blade-element equations is then derived giving 
the relations between the thrust and flight-path velocity components and 
the equilibrium blade angles, torque, and in-plane forces and moments. 
Neither the blade-element nor the approximate solutions are dependent 
upon the usual approximations that the inflow angle and blade angle of 
the blade elements are small angles.  Thus the present equations should 
be useful for convertaplane as well as helicopter calculations. 

It appears that nonlinear blade twist may be desirable for a con- 
vertaplane rotor in order to obtain useful propeller efficiencies. 
Therefore, the blade-element equations have been arranged so that any 
reasonable distribution of blade twist may be used.  Also, the equations 
were set up in terms of an arbitrary blade-chord distribution since it 
was found that the use of the actual blade-chord distribution and the 
elimination of the usual assumption that the blade airfoil extended 
inboard to the axis of rotation largely eliminated the necessity for the 
usual reverse-flow corrections.  Tables of the necessary factors are 
included for blades having a linear taper, linear twist, and an airfoil 
contour from -r = 0.15R to r = R and for blades having a linear taper, 
helical twist, and airfoil contours extending from r = 0.20R to r = R 
(where r is the radius of the blade element and R, the radius of the 
blade tip). 
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The present analysis is based upon the following assumptions: 

. (l).'The blade-element lift coefficient may be assumed to be pro- 
portional to the sine of the blade-element angle of attack, and the 
blade-element profile-drag coefficient may be represented by the first 
three terms of' a- Fourier-series in the blade-element angle of attack. 
This implies, the neglect qf blade stall effects in the equations for the 
blade angles* The effect of tip stall is taken into account in the 
equations for the rotor torque. 

(2) The blade axes may be assumed to be, and to remain, straight 
lines. 
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(3) The lateral and longitudinal variations of the normal component 
of the induced velocity at the tip-path plane may be assumed to be linear. 

(4) The effects of compressibility on the tip sections of the 
advancing blade may be neglected. 

(5) All radial velocity components and the tangential components- 
of the induced velocity may be neglected. 

(6) Blade tip effects maybe neglected. 

A comparison of the results given by the present equations with the 
full-scale helicopter test data of NACA TN 1266 shows good agreement for 
the helicopter flight range covered in that report. 

<" ■ ' •:•£# 
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INTRODUCTION 

This project, which was conducted at the Georgia Institute of 
Technology Engineering Experiment Station under the sponsorship and with 
the financial assistance of the National Advisory Committee for Aeronautics 
wals undertaken in order to develop a blade-element analysis for lifting   ■' 
rotors^that would be useful for convertaplane calculations. This" neces- 
sitated the elimination of the usual approximations that the blade-element 
inflow angle. 0 and the blade angle 6    are small angles and required a 
reasonably exact treatment,of the blade geometry. 

+>,* JVrf f?Und th8t a Practical approach to the problem of eliminating 
the small-angle approximations for the lift forces could be obtained bv 
writing the lift coefficient of the blade element as   ' '■- 

■szzsm 

cl  = a sin ar = a(sin 0V cos 0y + cos 0y sin 0V) 
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and, consequently, the thrust component of force dL cos $v    on a blade 
element as 

dL cos 0v = I Pa(u cos 0V)[sin 0v(u cos 0V) + cos 6v(u sin 0V)1 c dr 

Similarly, the tangential component of the lift on a blade element may be 
expressed as 

dL sin 0V = I pa(ü sin ' 0y)Isin 0y(u cos 0V) + cos 0v(u sin 0V)J c dr 

It was also found that the small-angle approximations could be largely 
eliminated for the profile-drag terms by expressing the blade-element 
profile-drag coefficient c^  as 

o 

cd = eo + 61 sin °r + 62 cos ar 

The exact blade geometry has been retained throughout by expressing 
the blade-chord and blade-twist distribution in the form of the following 
constants: 

cr« = —  /      ex11-1 Qx 
«R JXl 

Jnc = r^r /     c cos etxn_1 

and 

1     / a    n-1   , ns = l&J    C Sln   tX 
x
l 
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where 6t is*the blade twist in the angle of zero lift between the 
reference station and nondimensional radius x. Values of these con- 
stants are given in tables 1 to 3' for blades having linear taper, linear 
twist, and x-j_ = 0.15 and in tables 1, h,  and 5 for blades having linear 

taper, helical twist, and x^ = 0.20. 

The present system of equations has been set up with respect to tip- 
path-pläne coordinates or coordinates based on the virtual axis of rota- 
tion (fig. l) rather than the usual coordinate system based on the plane 
of.zero feathering in order to obtain shorter expressions for the in-plane 
rotor forces and moments. The use of coordinates alined with the virtual 
axis of rotation also facilitates the treatment of some accelerated flight 
problems. 

Certain refinements in the induced-velocity theory, as given in 
reference 1, have been incorporated with some minor changes in the 
present equations along with the necessary terms for an arbitrary angular 
velocity of roll and pitch of the tip-path plane. 

Standard NACA nomenclature has been used where possible, with the 
subscript v for virtual axis of rotation appended to the usual symbols 
which, in this paper, have a similar meaning but different numerical 
values. 

NOTATION 

a slope of lift curve for blade element at 0.75R (per radian) 

aQ        rotor coning angle 

EFQ        coning angle for zero blade-root bending moment 

a^        coefficient of sine component of blade cyclic-pitch angle 
measured with respect to tip-path plane where 

0V = A0 +  0-t  -  &i sin \|r + bj cos \|r 

also coefficient of cosine term of Fourier series for 
blade flapping angle ß measured with respect to plane 
of zero feathering where 

ß = aQ - a^ cos t - b-j_ sin \|r - a2 cos 2\|r - b2 sin 2\|f - . . . 

^: 

s-^ 

§P 
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a2        coefficient of second-harmonic cosine term in Fourier series 
for blade flapping angle , 

AQ        mean blade pitch angle at reference station, positive above 
tip-path plane 

b number of blades in rotor 

bj        coefficient of cosine component of blade cyclic-pitch angle 
measured with respect to the tip-path plane; also coeffi- 
cient of sine term of Fourier series for blade flapping 
angle measured with respect to plane of zero feathering 

b2        coefficient of second-harmonic sine term in Fourier series . 
for blade flapping angle 

c blade chord at radius r 

c extended blade-root chord at r = 0 (for linear taper) 

c<q section profile-drag coefficient 

c^ section lift coefficient 

CJJ^ rotor rolling-moment coefficient measured about X-axis 
M- X 

1 i p«fi2R5 

CW       rotor pitching-moment coefficient measured about Y-axis 

% 

L| pnfi2R5 

Cn        rotor torque coefficient [—-—-) - 
\p«ft2R5/ 

ACQS       increment to CQ from tip stall on retreating blade 

CT        rotor thrust coefficient | ^_ 
2R\ ,P«f2 

F 
Cx        rotor X-force coefficient /  — 

J pitP^R^y 
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' xv direction of rotation '   -- 
I PäÖ2^' 

Cv        rotor Y-force coefficient f ■= *_. , 
7 \J PitflSR^j 

','C_        rotor-blade thrust-force coefficient f = z
0 1 ■ 

Dp        fuselage and wing drag 

D0        blade profile drag 

EQ        mean blade drag angle, positive in direction of rotation and 
measured between blade axis and line through rotor axis 
of rotation and drag hinge (i.e., blade drag angle t,     is 
i  = Eo + Ei cos t + Fi sin t'+ . . .) 

E]_        coefficient of cosine term in expression for blade drag 
angle 

F^        coefficient of sine term in expression for blade drag angle 

Fx        component of rotor resultant force acting along X-axis 
/ 

Fxy       tangential component of the resultant air force on blade, 
positive in direction of rotation 

Fy component of rotor resultant force acting along Y-axis 

Fz Z component of resultant air force on blade 

g acceleration due to gravity 

Ij mass moment of inertia of blade about flapping hinge 

Jnc = CTnc sin A0 + CTns G0S A0 

^■m 

:• ■::! 

■ . '     '       '     ,j1^ 

CXy       rotor-blade tangential-force coefficient, positive in '■'--#> 
$$&$. 

•v:- 

:4 :'!:■■■ 

&* 
^ns = ans  sinA0-  anc cös A0 .                "I 

'■■■■■■■'■.■■'.'' '              ■                            "iMM 
'.'.' "'■■■■-■              ■ '                         , . '■"-.■" v^t? 

'■-.''. -■■'■« '-■■'-■■■:,*'*(*{ 

Hv.,- ■ ;■;■'.'■"■ • ,-  -■.'■:... ■... k ..                       ■'•.'■        • '•.' y| 
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I mass moment of inertia of rotor about virtual axis of 
rotation 

If        mass moment of inertia of blade about drag hinge 

ka        blade-root spring constant (blade-root bending moment in 
,   foot-pounds divided by angular deflection in radians of 

. three-quarter-radius point from ETQ) 

Lp fuselage and wing lift 

Mx rotor rolling moment 

My rotor pitching moment 

Q rotor torque, negative in direction of rotation 

r radius of blade element    c dr 

r radius of blade center of gravity 

ri radius of inboard blade airfoil element 

rß radius of flapping hinge 

R radius of blade tip 

t = Tip chord _ 1 (for linearly tapered blades) 
co 

T rotor thrust, component of rotor resultant force along 
Z-axis 

U component of resultant velocity at blade element that is 
normal to blade axis 

v    ~    mean normal component of induced velocity at tip-path 
plane (positive down and to rear) 

V velocity along flight path 

V-j_        Z component of induced velocity at radius r and azimuth 
angle ty    (positive in plus Z-direction) 

w slope of longitudinal variation of nondimensipnal induced 
velocity 
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W gross weight plus down component of any acceleration force 
acting on aircraft 

x nondimensional blade radius (r/R) 

xs        nondimensional radius outboard of which retreating blade is 
stalled 

X]_        nondimensional radius of inboard blade airfoil element 

y slope of lateral variation of nondimensional induced velocity 

Of        a.ngle of attack of fuselage measured between flight-path 
velocity vector and longitudinal fuselage axis 

ar        blade-element angle of attack measured from line of zero 
lift 

CLy.        angle of attack of tip-path plane measured in the XZ-plane 
between flight-path velocity vector and tip-path plane, 
positive below tip-path plane 

ß blade flapping angle at azimuth angle i|r (for tip-path plane, 

ßv = aQ - a2 cos 2i|f - b2 sin 2\(f - . . .; 

for plane of zero feathering, 

ß = ax - av cos T|C - b-|_ sin \|f - a2 cos 2i(r - b2 sin 2\|/ - . . .) 

F circulation of blade element at radius r and azimuth 
angle \|r 

^O^l     constants in expression for T where r = \TQ + F-^  sin \|MX 

6Q        value of c^  at c^ = 0 

e constant in power equation for c<i0 

(i-e-> cd0 = 
60 + ecZ2) 

6Q,6n,62   constants for first three terms of Fourier series expressing 
relation between c^  and Oj. 

(i.e.,  C(i0 = 6Q + e^ sin ar + e2 cos Op 

or cd0 
= el s^n "^r + e2 cos ar) 

blade drag angle at azimuth angle -\|r, positive in direction 
of rotation 

tsa 
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6-|_        twist in zero-lift chord line between axis of rotation and 
"blade tip for blades with linear twist, positive for 
increased angle at tip (i.e., 6-^  = Bjx) 

6-t        twist in rotor blade angle of zero lift between reference 
station and radius r, positive for larger angle outboard 

6rji        design helix angle at tip of blade for blades with helical 
, twist 

GY pitch angle of blade element at radius r and azimuth 
angle i|/ measured between zero-lift chord line and tip- 
path plane, positive above tip-path plane 
(AQ + 0-t - aj sin ty + b-j_ cos i|/j y ' 

6X angular displacement of tip-path plane about X-axis from 
horizontal 

8Y angular displacement of tiprpath plane about Y-axis from 
horizontal 

T 

Xy        inflow velocity ratio at center of tip-path plane 
/V sin <Xy  - v\ 
\"   ÜB. / 

(V  COS Ov \ 
|iv        in-plane velocity ratio at tip-path plane . I j 

p density of air 

an  = -i- /  ex11  dx constants which express blade-chord distribution 

(i-e" CTi = i/xl
cdx 

0p = —   /      cx dx,  etc. 
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ffnc = zs  /  c cos etx
n_1 dx 

ffTlc<     =      /      c sin 0-txn-l dx 

constants which express blade-chord and 
blade-twist distribution 

1 

0C        angle between flight path and horizontal, positive below 
horizontal 

0V        inflow angle at blade element measured in plane perpen- 
dicular to blade axis and between tip-path plane and 
relative wind, positive below tip-path plane 

i|r azimuth angle of blade axis measured about Z-axis from X-axis 
(This angle is very nearly but not identically equal to the 
equivalent angle in plane of zero feathering.) 

(&X ratio of angular velocity of roll of tip-path plane about 
X-axis to, fl 

(Oy ratio of angular velocity of pitch of tip-path plane about 
Y-axis to fl 

ß mean angular velocity of rotor blade axis about Z-axis 

All angles are in radian measure. 

ANALYSIS 

Value of Normal Component of Induced Velocity at Radius r 

and Azimuth Angle i|f 

It is shown in reference 1 that for a lightly loaded single rotor 
composed of a large number of blades b each having a circulation given 
by the expression 

r = r0 + r-L sin * (1) 

,•>.!] 
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the mean value of the normal component of the induced velocity is. 

■p SiRCm 

(l - § Hv2)^2 + Hv
2 

(2) 

Equation (2) was derived on the assumption that the wake extended 
to infinity and had the form of a straight elliptic cylinder. Thus, for 
those flight conditions where a "vortex ring" type flow exists, equa- 
tion (2) is not applicable and the va'lue of v must, at present, be 

obtained from experiment.  The term (1 -1,/) in the denominator of 

equation (2) arises from the lateral dissymmetry in the blade circulation 
that is required for rolling-moment equilibrium, and this term is the 
only correction which the elementary theory makes in Glauert's original 
hypothesis that v = T/2pAV, where V1  is (the resultant velocity at 
the center of the rotor. 

If the distribution of the normal component of the induced velocity 
Vj_ over the tip-path plane is denoted by a power series in the non- 
dimensional radius x and a Fourier series in the azimuth angle ty such 
that for the first-order terms 

Vi   v .      .  , — = + wx cos f + yx sin y 
ÜB       m * (3) 

it can be shown from the results of reference 1 that 

k 
3 (l- l-

8^ l + 
fe)2 

V 

ÜB 
w 

and 

y * 2^v fa (5) 

For level flight and uy > 0.15 the expression for y may be simplified 

to 

y £ cT (6) 
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It may be noted that for a pair of equally loaded, coaxial, counter- 
rotating rotors, the values of w and y are 

k 
~ 3 f-W-ffi m <T) 

• and 

y = 0 (8) 

Approximate Values of Rotor Blade Angles, Torque, and 

X-Force and Y-Force Coefficients 

It is convenient for preliminary calculations and checking and nec- 
essary, in the general -case, for the determination of the angle of attack 
and lateral tilt of the tip-path plane to have simple expressions of use- 
ful accuracy for the"rotor torque, X force, and Y force that are 
independent of the rotor blade angles. One such set of equations which 
take into account all the principal variables including the primary 
effects of the reverse-flow region may be obtained from a consideration 
of the distribution of the blade circulation. It may be noted before 
proceeding that the use of any radial blade-circulation distribution 
other than the uniform value assumed in the derivation of the induced- 
velocity equations will underestimate the induced torque. Thus, it is 
theoretically incorrect to calculate the induced torque from blade- 
element equations. However, for the extreme case of a triangular dis- 
tribution of circulation along the radius and |iv = 0.5> the error in 

the induced torque is only 3^- percent and thus is probably within the 

errors of present equations for the induced velocity. 

For the present purposes a triangular distribution of blade circu- 
lation along the radius and a sinusoidal variation with azimuth angle 
is sufficiently accurate and will be used. Then 

= (r0 + r-L sin*)x (9) 
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Writing 

U cos 0v = ftR(x + M-V 
sin ty) (10) 

and 

U sin 0V = ÜR \y + yx sin \|r  +  (wx -  aQHv)cos ty (11) 

it follows for thrust and rolling-moment equilibrium that 

33tfiR2CT 

Ml - Hv2) V     3 
1 - j±- |iv sin i|r jx (12) 

The - reference blade angle AQ at r = 0.75R corresponding to the 
average value of the circulation and inflow angle at this station and 
a weighted chord may he obtained from the substitution 

2JTCC, 
0.75R = (c^0.75R = 2(r/cU) 0.75R 

or 

AQ =  sin -1  2l (i + 16 ,v2 + 6k     k\ 2560 ,v6 
rfbff3(I- MV2)V       9     V        27 729 

tan" If — Xv 

(13) 

where 

on 
JTR, 

cxn"l dx (1*0 
xl 

For linearly tapered hlades the values of    crn    may be obtained by 
interpolation from table  1. 
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The values of a^ and b^ obtained from the differences in blade 

circulation and inflow angle at r = 0.75R for T|T = JT/2 and \|r = 3*/2 
for a^ and i|f = 0 and i|f = n for b^ are 

y - 2S. xvMv          8c 
ai=7 7ö + -, ~ ; 7-      (15) 

i^J  3«*o3(l-f,v2+2ä^ 

and 

bi = -w + - aQUy (l6) 

where the value of ag for blade root moment equilibrium on a blade 
with the flapping hinge at the axis of rotation is approximately 

3PKR5CT (l - I u^ 
ao =  ^—2 J- (17) 

^(1 - Uv2) 

Similarly 

■e - 8W (18) 
8u- 2 

and 

b2 = 0 (19) 

The value of the blade-element profile-drag coefficient may be 
represented with sufficient accuracy for the present purposes by two 
terms in a power series in the blade-element lift coefficient c^ such 
that 

2 cdo = &0 + €CZ (20) 
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where for conventional airfoils SQ a O.OO80 and e j» O.OO8O. Making 
the necessary substitutions and integrations the value of the rotor 
torque coefficient is 

CQ = —)£ /. + 1 b5o 
1 - Hv2 

ok  + |(^v2 + Hv2)«^ 

|för 
+ 5 u, 2 2 11 + £ uv^ )b04 

F"3/   (1 - Hv
2)2 

+ ACQS from equation (89b) (where applicable) 

(21) 

Similarly, neglecting blade-shank drag which is assumed to be included 
in the helicopter parasite drag, the values of the X- and Y-force 
coefficients are 

i PÄ4 

CT(2XvUv - y) ^ 6buva3f riT 
2C, 

uv
c 

(1 - Hv2 )2 
(22) 

and 

Cy = 
CT (w - I aQUyj 

I pitflf^ 
1 -  u v 

(23) 

_  The above equations based upon a triangular distribution of blade 
circulation along the radius and a sinusoidal variation with azimuth 
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angle are sufficiently accurate for preliminary calculations, checking,      ,„,;: 
and the determination of the angle of attack and lateral tilt of the 
tip-path plane provided there are no large areas of the rotor outside        * 1 

the reverse-flow region that have blade elements operating in the stalled      \ 
or negative thrust range. This implies a reasonable blade twist for the 
flight conditions. 

Table 6 shows a comparison of the values of the parameters 
calculated from the above circulation equations with the flight test        ...■•. 
results of reference 2. 

Determination of Angle of Attack and Lateral Tilt 

of Tip-Path Plane 

Given the values of the flight-path velocity V, climb angle 0C, 

gross weight and vertical component of the inertia force W, fuselage 
and wing drag, lift, moment characteristics, and position of center of 
gravity, the fuselage angle of attack and thus the fuselage and wing 
lift Lp and drag Dp can be obtained for the trim condition by 
setting the summation of moments, acting on the fuselage and wing and 
taken about the rotor hub, equal to zero. Since the lateral tilt of 
the tip-path plane has a negligible effect, it follows from the geometry 
of the above forces, as shown in figure 2, that 

Dp cos 0C - Ly sin 0C + Fx cos 0 
tan 0y = ——     (2k) 

W - Lp cos 0G - Dp sin 0C + Fx 
sin ey 

is a good approximation for unaccelerated flight. It may be noted that 
Dp should include an allowance for rotor-hub and blade-shank drag. In 

general, the terms involving Fx will have only a small effect on the 
value of 0y and a sufficiently exact solution can be obtained on the 

second iteration. Thus, as a first approximation, 

«H 
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Dp cos 0C - Lp sin 0C 
tan 0y = — ■  (25) 

W - Lp cos pc - Dp sin <pc 

av = 0C + ey (26) 

W - Lp cos 0 - Dp sin 0_ 
CT =  ^f—"  (27) 

Pjtß  R  COS   6y 

V COS (Xy .       • 
hr - —5^ (28) 

V sin cur  ,r 
K =  — - — 29) 
^    fiR     fiR v  ; 

The values of v/fiR may be obtained from equation (2) or by double 
interpolation from table 7 which includes the experimental values for 
vertical descent from reference 3 and estimates of the values for the 
inclined flight "vortex ring" states. The values of w, y, and Fx 

can then be determined from equations (k), (5), and (22), and from these 
second approximations to the values of 0„,  a^, and uv can be made 

from equations {2k),   (26), and (28).  If necessary, a new value of Cm 
may then be obtained from the equation 

W - Lp cos 0„ - Dp sin 0_ + FY sin 0„ 
cT = * £_* £ * 1 (30) 

pkttti  cos ey 

and thus the more exact value of Xv    from equation (29). 

for helicopter calculations the first approximation for Cm is 

sufficiently accurate, and if u.y is small (i.e., \±y < 0.15) the effect 

of Fx on cty may be neglected for level flight. 
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The tail-rotor thrust TT required for a helicopter with a single 

main rotor is 

TT = Q/Z (31) 

where I    is the perpendicular distance between axis of main and tail 
rotors and the value of CQ may be obtained from equation (21). The 

lateral tilt 6X    of the tip-path plane for a single-rotor aircraft in 
unaccelerated flight is thus 

where Cy is given by equation (23). 

Application of Two-Dimensional Airfoil Theory and Data 

to Rotor-Blade-Element Calculations 

Two-dimensional thin-airfoil theory demonstrates that 

cz =  a sin a (33) 

For a two-dimensional cascade of airfoils, equation (33) is modified 
by a multiplying function of the solidity, chord spacing, and blade angles 
that is very nearly unity for average lifting-rotor configurations as 
shown in reference k.    Thus, within the approximation that the radial 
components of flow may be neglected, equation (33) should be applicable 
for blade-element rotor theory over the unstalled range of blade-element 
angles of attack. Beyond the stall, equation (33) is somewhat less in 
error than the usual relation cj = aa as can be seen from figure 3 

which »is a plot of the above expressions and the experimental values of 
Cj against a for an NACA 0015 airfoil. The use of equation (33), 

rather than the usual approximation that c^ = aa, allows the thrust and 

tangential components of lift on a blade element to be exactly expressed, 
within the approximations involved in neglecting radial components of 
the flow, in terms of the easily, integrated in-plane and normal components 
of the velocity at the blade element U cos 0V and U sin 0V. Thus the 

usual approximation that the inflow angle 0V is a small angle may be 

eliminated. This may be demonstrated as follows: 
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Omitting the negligible component of the profile drag, the thrust dT 
on a blade element c dr is 

or since 

dT = \  pU2cc7 cos 0 dr (3^) 

Cj = a sin a^. = a (sin 6y  cos 0y + cos 6y sin 0y)       (35) 

dT = I pac(u cos 0y)lsin 0y(u cos 0y) + cos 6y(u sin 0V) dr   (36) 

The tangential component of the lift on a. blade element may be similarly- 
expressed as 

dL sin 0v = | pac(u sin 0y) [sin 6T(u cos 0y) + cos ey(u sin 0yH dr (37) 

The value of the slope of the lift curve a of the blade-element air- 
foil in the above relations may be taken as the value corresponding to 
the Reynolds number, Mach number, and surface roughness existing at the 
three-quarter-radius point of the rotor blades under consideration. For 
the usual tip speeds, in the 500-foot-per-second range, the Prandtl- 
Glauert Mach number correction 

-=r= (38) 
\1 -  M2 

where 

a* low Mach number lift-curve slope from two-dimensional 
wind-tunnel tests 

M free-stream Mach number at three-quarter blade 
radius 

may be used to correct the lift-curve slope from low Mach number data. 

The values of c^u obtained from two-dimensional wind-tunnel tests 

at appropriate Reynolds numbers and model surface roughness should be 
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directly applicable to rotor-blade-element calculations in the unstalled 
range of angles of attack below the Mach numbers and angles of attack 
for drag divergence, since the effect of subsonic Mach number on profile 
drag is negligible as shown in reference 5- However, it should be noted 
that the profile-drag coefficient is only constant with change of sub- 
sonic Mach number if it is taken as a function of the lift coefficient. 
If,the airfoil section data are plotted against section angle of attack 
and the Prandtl-Glauert correction is applied to the lift-curve slope, 
this is equivalent to multiplying the section-angle-of-attack scale by 

(l - M2) ' . Consequently, the section-angle-of-attack scale on the 

profile-drag curve must be multiplied by (l - M2) '  to retain the 
same relation between CCLQ and C2« 

In view of the errors in the magnitude and distribution of the blade 
circulation that arise from the necessary neglect of blade deflections, 
and so forth, it is probably -not justifiable to take into account sec- 
ondary effects of the profile drag. Thus, expressing the relation between 
the profile-drag coefficient and the blade-element angle of attack by the 
first three terms of a Fourier series gives 

c do = e0 + e-L sin ap + e2 cos ar (39) 

The constants in the above equation may be evaluated from the two- 
dimenSional wind-tunnel data for the blade airfoil at, say, a = 0°, 5°, 
and 10°. The advantages of equation (39) over the usual expression 

cd0 = 
5o + slar + 52ar2 

are: The last two terms of equation (39) can be exactly expressed in 
the known velocity components U cos 0y and U sin 0y; the resulting 

expressions for the forces and moments on the blade are considerably 
simplified by the absence of the squared term in 04.; and it is an 

equally accurate approximation to the experimental values of c^ as 

may be seen from figure k.    However, in using equation (39) it may be 
noted that the calculated value of c^ is the small difference between 

large quantities and thus the values of eQ, e-^ and e2 should be 

determined to four places in order tö obtain the value of c<q  to the 

customary accuracy. For the more severe convertaplane flight conditions 
where the inflow velocity is large (|XV| > O.io) a certain error arises 

in the treatment of the eQ terms, and it is necessary to fall back on 

Sau 
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the two-term approximation for c<i0, cd = e-j_ sin ctj. + e2 cos aT, 

where e^ and e2 are evaluated from the experimental data at, say, • 

a = 2° and a = 7°.  This additional approximation is permissible for l 

these flight conditions, since the relative effects of the profile drag 
become less important as the inflow velocities and rotor blade angles 
increase. For example, in propeller calculations the single-point 
approximation cd = ec^ is usually used. 

It follows from the geometry and equations (35) and (39) that the 
tangential component of the profile drag on a blade element may be 
expressed as 

dD0 cos 0V = I pc(u cos 0V)< e0u.+ 

ejKU cos 0V) sin 6V +  (u sin 0V) cos ey + 

e2[(u cos 0V) cos 6Y  - (u sin 0V) sin 6y Y   dr    (ho) 

Thrust of a Blade at Azimuth Angle i|r 

The thrust Fz of a blade at azimuth angle i|r is 

Fz = I Pa /  c(u cos 0y)[(u cos 0V) sin 6y  + (u sin 0V) cos 0^1 dr 

(hi) 
where 1^ is the radius of the inboard blade airfoil element.  In the 

general case it follows from the geometry that 

U cos 0V = m(x +  uv sin i)r) (42) 

and 

U sin 0V = ORVKy +   (wx + oyx -  aQ|iv)   cos \|r +  (y - o^jx sin t + 

2b2x cos  2t -  2a2x sin 2ty\ (1+3) 
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where 

cjbjj        ratio of angular velocity of roll of tip-path plane about 
X-axis to ti 

ooy ratio of angular velocity of pitch of tip-path plane about 
Y-axis to fi 

Neglecting the higher harmonics of the cyclic pitch that may arise from 
control-system linkages, the pitch angle 0V of a blade element at 
radius r and aximuth angle \|r, measured with respect to the tip-path 
plane, is 

0V = A0 + ©t " al sin ^ + bl cos ^ (^) 

where 

AQ mean blade pitch angle at reference station 

0-t twist in rotor blade angle of zero lift between reference 
station and radius r 

a^L minus the coefficient of sine component of blade cyclic- 
pitch angle measured with respect to tip-path plane 

b^ coefficient of cosine component of cyclic-pitch angle 
measured with respect to tip-path plane 

In the general case (i.e., for the convertaplane) AQ and 6t 

may not be small angles'. However, it appears that the magnitude of the 
cyclic-pitch angle will always be limited by tip stall on the retreating 
blade to the range where it is a good approximation that 

sin (-a-j_ sin t + b-^ cos I|M = -a-|_ sin \|r + bj cos \|r       (^5) 

and 

cos (-&! sin \|r + b-j_ cos \|rj = 1 (h6) 
♦ 
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It follows from equation (44), upon expanding the functions sin 6V 
and cos 0y, that 

sin 6V = |j3in A0 + (cos Aqtf-aj sin \|r + b-j_ cos ty)    cos 0t + 

cos AQ - fein An)f-a1 sin \|r + bx cos >|rj     sin 6^ (47) 

cos 6V =    cos AQ  - (sin A^f-a^ sin T|/ + b-j_ cos i|r)    cos  6t - 

Isin A0 + (cos AQY-8-L sin \|r + \ cos t)    sin 0t (48) 

Substituting the values of    U cos 0V,     U sin 0V,     sin 6V,   and    cos 6V 

from equations  (42),   (43),   (47),  and  (48)   in equation  (4l),  defining 

If1 
CTnc  = riß  /      cxn_1cos  0t dx (49) 

xl 

1 r1 
0
ns  = -0 /       cx^sin 0t dx (50) 

°xl 

^c  =  °nc  sin A0 +  ans  cos A0 (51) 

Ins  = ans sin A0 -  onc  cos A0 (52) 

multiplying out the terms,  and reducing the functions of    i|r    to 

harmonic  form give  for the thrust  coefficient    Cz  =  -     of one 
\ pjrft2R^ 

blade at an azimuth angle    \|f    the expression of equation  (53): 
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* 
Equation (53) is written in tabular form where the coefficients in the 
boxes must be multiplied by row and column heads.  Values of CTnc  and 

'*       ans may be obtained by interpolation from tables 2 and 3 for linearly 

tapered and twisted blades, where '• 

c = c0(l + tx) from x = 0.15 to x = 1 (5*0 

et = elx ; (55) 

V=Ho. '  (56) 

and 

jtR 

extended blade-root chord at r = 0 

_ Tip chord  .. 

6i twist in angle of blade zero lift between axis of rotation 
and tip 

In order to use the tabulated values of anc and 0ns for blades with 

linear twist and taper, it is necessary to take the reference blade 
pitch angle AQ at the extended blade-root chord cQ at r = x = 0. 

The use of the lower limit x-|_ .= 0.15 in the computations for the 

blades having linear taper and twist corresponds to present practice 
and largely, eliminates the necessity of making any reverse-flow correc- s 

tion to the blade thrust.  The reverse-flow effects are discussed in the ■ 
following section. 

Additional tables (tables h  and 5) give the values of anc and crns 

for blades having linear taper from x-j_ = 0.20 to x = 1 and helical 

twist where 

et.tan-i(^ (57) 
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and 0T is the design helix angle at x = 1.  In this case, the refer- 

ence station for AQ is taken at the blade tip. The tables for helical 
twist are included for convertaplane usage since helical twist would 
appear to be desirable for a reasonable propeller efficiency. An inner 
limit of x-|_ = 0.20 was used for the computation of the values of 
anc and ans for this case of helical twist in order to minimize the 
severe root stall likely to occur under some convertaplane flight con- 
ditions. It might be pointed out that helical twist would also appear 
to afford an increase in helicopter-rotor performance over that obtain- 
able with linear twist. 

Reverse-Flow Considerations 

For normal helicopter and convertaplane flight conditions where 
there is a downflow through the rotor and 0V is negative over the 
reverse-flow region, the maximum value of \iy    is limited for conven- 

tional rotors to relatively'low values of the order of 0.30 by tip stall 
on the retreating blades.  Under these conditions the portion of the 
retreating blade extending inboard from the outer edge of the reverse- 
flow region at x = -|iv sin i|r, where the in-plane component of velocity 

is zero, to x = x-p where the blade airfoil section ends, has a neg- 

ligible thrust loading because the in-plane components of velocity are 
very small. The present equations take into account thetfact that the 
blade airfoil does not exist inboard of x = x±,  for which region- the 
the in-plane components of velocity are larger, within the reverse-flow 
circle, and previous equations erred in assuming the blade airfoil to 

■ exist. 

For those flight conditions where there is an upflow through the 
rotor and the tip-stall limitations on |iv are relaxed, the present 

equations give the proper direction to the blade-element thrust for 
those blade elements within the reverse-flow region and inside the radius 
where 0V % 20y. 

Thus, for all practical purposes, it is not necessary to use reverse- 
flow corrections when applying the present equations to conventional rotors. 

For unconventional rotors operating with net downflow at large values 
of nv it would appear from strip analysis to be desirable and even nec- 

essary to minimize the forces in the reverse-flow region by using a suf- 

ficiently large design value of xx, for example, xx > ! \iv      . In 

this case less error is introduced by taking into account the inboard 
blade airfoil limit and omitting the usual reverse-flow correction than 
vice versa. 
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Mean Rotor Thrust 

Omitting the coefficients of the second-harmonic flapping angle 
which have a negligible effect on the mean rotor thrust, the value of 
the mean rotor thrust coefficient obtained from the first row of equa- 
tion (53) hy averaging the value of Cz/a over the interval from 
Tjr = 0 to i|f = 2JT is given by 

= L1 + I ai(y ~ °*) " I bi(w + ^JJ^c + I aobiMi 

§(alV + h^Mlc  -   \K "  al^v + |(y " a)x)^v]I2s -    (58) 

Mean Rotor Air Rolling Moment 

The value of the mean rotor air-rolling-moment coefficient about 
the X-axis 

Mx 
TDX       1 2 <=> 

±  prt$rRp 

is found, upon integration, to be obtained by multiplying the second row 

of equation (53) by -^ b and introducing the moment arm by writing the 

subscripts of Inc and Ins to one higher order. Thus, 

-2£ = |2uv + a^ + ^ aa(y - 0^)^  - - bx(w + o^u^^ + 

I aoVv2l2c +   (al "  y + %Ws '+   (^ alHv "  V)M2S (59) 

Mean Rotor Air Pitching Moment 

Similarly, the mean rotor air.-pitching-moment coefficient 

V = I p7tn2R5 
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obtained from the third row of equation (53)  is 

2C: 

~äb 2E =  [^ - I ai(w + cDy)nv + I Di(y - ^Kj^c + 

I a0altiv
2I2c + (hi + w + ay)l^s - a0uvI3s + ^ b-^v

2I2s  ' (60) 

Mean Blade-Root Air Moment 

The coefficient Cm0 of the blade-root air moment MQ is merely 

the first row of equation (53) with the I factors to one higher sub- 
script. Thus, for 

Mo 
"mo  1   0 c 

Sao - £ + i aa(y - a*) - \ bx(w + ay)] Ikc  + | aQb^Ig«. + 

|(aiXv+ tiv)M2c " \\ ~  al^v + |(y " ^VyJ^s      (6l) 

Equilibrium Values of Mean Rotor Pitching Moment 

and Rolling Moment 

If an external moment Mj is applied to a single rotor with three 
or more blades about a diameter, axis 1, the differential equations of 
motion about axis 1 at t = ti ' and axis 2 at t = ^1 + 90° can be shown 
by the use of Euler's equations to be 

2 dt     2   Iy   Iy 

.. ■ :J. JÜ 
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and 

1 dCÜ2  0,1* +k2CD2 (63) 

where oy±    and erg are the angular velocities of the tip-path plane 

about axes 1 and 2, respectively,  k-jü^ and ^^    are ^e damping 

moments, and Iy is the mass moment of inertia of the'rotor about the 

virtual axis of rotation.  The general solution of equations (62) 
and (63) is a pair of equations of the form 

CD. lor 2 
A sin r2 - (^)-4MH^ 

k-]+k2 

~^v~ 

(64) 

In the actual case, damping of the nutation appears to be very rapid 
for an articulated rotor. Also, for pilot-controlled motion, k2 ~ 0. 
For example, for a constant control moment Mj,  k2 = 0, and kj_ = 2&IV, 

which is then the value of k-j_ for critical damping, it follows'that 

<°1 ■ = 
^l* c-ait (65) 

or 

üL>2 
= %_/    _e-2fit). (66) 

It can be seen from equations (65) and (66)  that the transients decay 
very rapidly and their effects can be neglected in most problems. There- 
fore, to a good approximation for a single rotor 

Mx = M"V + "xf (67) 

M. = -Ivfi % + Myf (68) 
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where Mxf and M^ are any moments transmitted about the X- and Y-axes 
from the fuselage to the rotor. For steady straight and level flight 

.a* = toy  = 0 {69) 

For steady banked turns the value of CT can be taken proportional to 

sec 0X. Also 

-g sin 0y tan 0X 
o^ ~   (70) 

Vfi 

and 

g sin 9X tan 0X 

°V* m  • (71) 

where 0X is the equilibrium lateral-tilt angle of the tip-path plane 
(approximately equal to equilibrium angle of bank, positive for turns 
in direction of rotor rotation). 

For any curvature of the flight path, the nondimensional compon- 
ents (% and ay of the spatial angular velocity of the aircraft may 
be calculated and, consequently, the approximate equilibrium values of 
Mx and My can be obtained from equations (67) and (68). 

Approximate Solution for Equilibrium Values of Mean Reference 

Blade Angle A0, Lateral and Longitudinal Components of 

Cyclic Pitch aj and b]_, and Coning Angle aQ 

An approximate solution of the set of four nonlinear, transcendental 
equations (58), (59), (60), and (6l) for the four unknowns A0, ■&]_,     a0, 
and b]_ that is sufficiently accurate for most steady-flight helicopter 
work and useful as a first trial for steady-flight convertaplane calcula- 
tions may be obtained as follows: Setting the small terms and (%, ov, 
and Cmx equal to zero and cos AQ = 1 in equations (58) and (59) and 
eliminating aj_ gives 

(I? "  CT3s  - V2c)(°lk: + I ^v2(T2c -  V3s) + ^v2cT2c(2cJ3s +  V2c) 
sin A0 = ^— '-± -       (72) 

'       (03c + i »v\c  "  V2s)(fflfc + I ^v2(J2c  " V3s) - 2
^V

2CT
2C

CT
3C 
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Then,  from equation (59)  for    o^ = ooy = C^. = 0 

2[xvI3c  - ylks  -  VvI2s 
an   = 

(K + I yUv)l3c 
+ lite + I »v%s 

(73) 

Let a0 "be the design coning angle for the general case of semirigid 
blades (i.e., coning angle for zero blade-root bending moment). Let 
kaQ be the spring constant of the blade for angular deflections of the 

three-quarter-radius point from äQ. Then setting the summation of 

moments about the blade root equal to zero and solving for aQ, the 
coning angle -at the three-qüarter-radius point, 

a0 

\ PJiai22R^[l4c'+ IftjXy + liv)uvI2c -   (y - a1nv)l3J]   + a^ - Mgrg 

IjQ^ +  ka0 

(7*) 
where 

mass of blade 

radius of blade center of gravity 

mass moment of inertia of blade about flapping hinge 
(or root) 

1 If the blades have a flapping hinge at the axis of rotation äQ = k&0 = 0. 

If the flapping hinge is located at radius rp from the axis of rotation, 

rßrMBfi2   \ 
aQ = 0 and ka ~ . _.  Then, knowing an, it follows from 1 " (rß/°-75R) j ° 
equation (60) that for 

^x = "V = cmy = 0 

°1 ~   , (75) 
M3c + I4s + l  ^v I2s 
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For those steady, unaccelerated flight conditions where cos AQ £ 1, the 
above solutions are sufficiently accurate and may be used to calculate 
the blade loadings and rotor torque, X force, and Y force. 

"Exact" Solution for AQ, a]_, and bx for Accelerated Flight 

Conditions and Those Flight Conditions where cos AQ {  1 

A reasonably rapid and sufficiently accurate solution of the "exact" 
equilibrium equations given by the first three rows of equation (53) can 
be obtained by using an approximate value for the coning angle aQ such 

as that given by equation (17) or (7*0- 

Then for the approximate value of AQ given by equation (72) and, 
for example, two other values several degrees successively smaller, the 
"exact" corresponding values of ax and \>i    can be determined by 

rewriting the equilibrium equations for the rotor pitching and rolling 
moments in the form 

2C. 
Aax + Bb! = P - 

and 

where 

"my 

Ca-|_ + Db1 = R + 

ab 

2C 'mx 
ab 

A = £(w + o>y)nvl3c - J a0uv
2I2c 

(76) 

(77) 

B = -\vI3c  - i(y - (üJcyvI3c  -  Iks  - i nv
2I2s 

C = V3c + |(y - aix)^vI3c +  Xks + % ^v2l2s 

D = - i(w + "^)nvI3c + I ac^v2l2c 

(78) 

(79) 

(80) 

P =   (w + ay)l4s  - a^I^ (81) 

R = -2^vI3c +  (y - CüJIIKJ + VvI2s (82) 
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Then 

and. 

(83) 

(8*0 

Having computed the values of a-,  and bj_ for ea_ch of the assumed 

values of A~, the corresponding values of GJI may "be found from the 

equation for the thrust equilibrium where 

2CT 
ab 

1 .. 2 J3c + \ ^v ^c " V2s " 2(y - ^)M2s + 

||(y - mx)l3c + | Vv
Ilc + M2sj al + 

|a0M2c " |(w + üV)I3^bl (85) 

Then plotting the values of 2(>r/ah, a-p and b^ against the trial values 
of AQ,  the "exact" value of AQ, and thus a^ and bi, may be obtained 

from the plot at the design or desired value of dp. 
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In-Plane Component of Force Fxy on a Blade 

at Azimuth Angle ty 

The in-plane component of force in the direction of rotation F^ 
on a blade at azimuth angle ty    is from equations (37) and (Uo) 

F  = -  pa /  c(u sin 0V) [sin 8Y(u cos 0V) + cos 6v(u sin 0V)J dr 

u r 
c(u cos 0V)J eQU + ^ sin 0v(u cos 0V) + 

1 "~ 

cos 0v(u sin 0vyi + e2 c°
s ev(u cos $v)   " sin ev(u sin 0v) ^dr 

(86) 
where 

cdn = e0 + el s^"n ar + e2 cos ^r 

Then, by (l) substituting the previously evaluated expressions for 
U cos 0V, U sin 0V,  sin 6y,  and cos 6V    given by equations (^2), (^3), 
(hj),  and (48); (2) neglecting the effects of second-harmonic flapping; 
and (3) writing UoU)(U cos 0V) as 6Q(U 

COS
 0V)

2
(
U
/
U
 
COS

 0V) 
axi^i 

expanding 

 U  = v 
U cos 0V   \ Vu cos 0vy 

by the binomial theorem and dropping third and higher terms, the expres- 
sion for the constant and first-harmonic terms becomes 

°xy = 1 pla^ = ^^ " (ACxy)6o " (ACxy^i " (ACxy^2  (87) 
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Rotor Torque 

The effects of tip stall at the higher values of uy and . CT/CT3 
on CQ are large and may he approximately evaluated for high-speed 

flight where Xv    is negative, as follows:  The retreating hlade will 
be stalled outboard of the nondimensional radius (for \v    negative) 

\y +  uv tanl *** - A0 - a-, - Ae + ) 
xR =  \-Z 1 ^L        (89a) 

(< 
+  tanl- 'max - A0 - aj - A0i 

where Aet is the aerodynamic blade twist between the reference station 
and the tip. Assuming a jump of 0.08 in the value of c<q  at the stall o 
and that the rotor area within which blade stall exists is a segment of 
minimum radius xs and symmetric about \|r = 3n/2, the increment ACQ 
to CQ due to tip stall is approximately 

ACQs « -^i(l - uv)2(l - xs) )Jl  - xs2 (89b) 
OJt 

(if xs < uv or xs > 1 equation (89b) is not applicable and 
ACQ =0.) Then 

2CQ 
-£* =-(Constant terms of Cxy with subscripts n on an,.   Inc, and 

2AC0 
Ins increased to n + l) + ——Is. (90a) 

For steady-state calculations equation (90a) may be reduced to 
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2CQ  
2C
T(| y^v - K)   | 2ACQS ^ 

* "  b(l - Hy2)   +  b 

€0 ß1 + t w2)^ " 2 ^^3 + K^v2 + ^v2)o2J + 

eijlltc +| ao^iM3c + |K + *;i>v)M2c + (»l^v - xv)I3sJ  + 

6 2 Ral^v " 0^3c "  ^ ' 2 tlw)I1^s " 2 ^Vv^s " 

I(ai\v + Hv)M2s] <90b) 

Rotor X Force 

The value of the rotor X-force coefficient Cx is 

2C    / \ Y = -(Sine terms of Cxy) (91) 
b 

However, the greater part of Cx arising from the lateral variation in 
blade circulation is a small difference between large quantities which 
are principally functions of a^ and A0- It follows that this part of 

Cx is more accurately obtained from the circulation equations than from 
the blade-element equations. Thus for steady-state solutions 

2C   2CT(2Xvnv - y) 

b     b(l - Mv2) 

^[(a^y + 2^v)l2c + (ai - y)l3s + Pai(iT - ^vj^vlis)   + 

r2l(ai - y)l3c +  (| a^y - ^V)MVIIC -  (2^v + a]>v)l2J        ^92^ 

Rotor    Y    Force 

The value of the rotor Y-force coefficient is 

2C 
— = Cosine terms of    Cxv (93) 
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As in the expression for Cx the above value of Cy given "by the blade- 

element equation is ä small difference between large quantities and the 
result for steady-state flight is more accurately obtained from the 
circulation expression 

CT (w - J BQUJ 

7     1 - .uv2 

Second-Harmonic Flapping 

Again letting kaQ ^e the spring constant relating the blade-root 

bending moment in foot-pounds to the angular deflection in radians of the 
three-quarter-radius point of the blades from the unstressed position, 
it follows that the magnitude of the cosine component of the second 
harmonic of the blade flapping angle is 

Similarly the magnitude of the sine component is 

«, L + JM b2 Ä 
u +  ÜK (96) 

d      1 - KM 

where 

J       (terms not involving b2 in the cos 2ty    row of thrust equa- 

tion (53) with the I factors changed to one higher sub- 

script) x I — 

K 

31^  - kaoy 

(coefficients of b2 in the cos 2ty row of thrust equa- 

tion (53) with the I factors changed to one higher 

subscript) X ' 
31 iß2 - k. aoy 

(terms not involving a^ in the sin 2i|r row of thrust 

equation (53) with the I factors changed to one higher 

N  / i p«n2R5a 
subscriptJ»X ' 

31 ift2 - kaoy 
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M (coefficients of a2 in the sin 2i|r row of thrust 

equation (53) with the I factors changed to one higher 

■i   prfl2R5a 
subscript! t)*(M 

^ao/ 

For steady-state flight conditions where    a^ = ay = 0    the expres- 

sions for the factors    J,     K,     L,  and    M   may be simplified to 

1 pnafi2R^ 

31^ -  kao 
-j[(*i\ + ^v)M2c - (ai - |y)M3sJ       (97) 

K 
^ pjtafl2R5 

3I-.fi2 - ka. 
("2I4£ (98) 

J pjTafi2R5 

Slifl    - ka   
L | 

blW2c  "  (bl + I W
)M3B 

+ I W^e (99) 

M 
^ pjtafl2R5 

3i^2 - kaQ 
Ks) (100) 

and I-j_ is the mass moment of inertia of the blade about the flapping 

hinge. 

It may be noted that ka = 0 for blades having a flapping hinge 

at the axis, of rotation.  If the flapping hinge is located at radius To 
then 

_  2 
rorMgfi 

^0 
1 - 

0.T5R 
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Amplitude of. Constant and First-Harmonic Components of 

Lag Angles in Unaccelerated Flight 

For an articulated rotor having lag hinges normal to the plane of 
rotation and located at a small radius e the equilibrium blade lag 
angle EQ is 

\  PrtR5 
E~ ~  

M.efl - -?—) 
£ \      0.7R/ 

2C I 
 ä from equation (90)        (lOl) 

where Mj. is the mass moment of the blade about the lag hinge. 

Similarly the coefficients of the cosine and sine components of the 
lag angle are 

§ prfäsg - 2a0blsl£ 
E, RJ  (102) 

-1       M.e - I. 

and . 

0 PJTR^F.. + 2a0alsIt 
F-L ~  ^ ^ (103) 

NLe - I. 

where a-^ and b.  are the cos i|r and sin ty components of the angle 

between the tip-path plane and the hub plane. For unaccelerated flight 
the values of a^s and t^s    are approximately 

als ~ av " af (10^ 

bls ~exf " ex (105) 

where 6   „ is the equilibrium lateral tilt of the fuselage. 
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Also 

I*      mass moment of inertia of a blade about lag hinge 

Ef      coefficient of cos ty in equation (88) for CXY with sub- 

scripts of I  factors changed from n to n + 1; approxi- 
mate value from circulation equations is 

2C.Tgw - a^v) 
E£ =   /  ' \ do6) 

Hi " ^v2) 

Ff     coefficient of sin \|r in equation (88) for Cxv with sub- 

scripts of I factors changed from n to n + 1; approxi- 
mate value from circulation equations is 

F 
2CMt y " T XvMv) 0.085CT

2uva^ 
t =   - ^ 1 0.008(2uv + yX.v)an + 

^(1 " ^v2) b2a32(i - ^v2)2 

(107) 

Thrust Unbalance 

Two-bladed rotor.- The second-harmonic variation in Oj for a two- 
bladed rotor is 

—i- = Fourth + fifth rows of equation (53)        (108) 

For üijj = cüy = 0 and steady-state conditions, the equation for the 

amplitude may be simplified to 

ACT 

|[fa2I3s   -   (bl + | W
)M2S 

+ i Vv^lJ     + 

fn \ A   ±/2 

(2b2X3s  + alM2sj    > (109) 
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Three-bladed rotor.- The third-harmonic Variationen Op for a 

three-bladed rotor is approximately 

2ACT 
% Sixth + seventh rows of equation (53)        (HO) 

3a 

or for cüjj = (Oy =  0 the amplitude is approximately 

2ACT 

3a ~ k 
i(aa2 + bl2)

1/2^2lis (111) 

An Independence-of-Blade-Element Analysis for Hovering, 

Vertical Ascent, and Convertaplane Propeller Condition 

The use of the relation c^ = a sin a permits a considerable 
simplification of the equations.resulting from the assumption of the 
independence of blade elements. As the exact propeller solutions of 
Betz, Goldstein, and Theodorsen are not applicable to a lifting rotor 
at zero or small advance ratios, a simple analysis of the independence 
of blade elements may be useful. 

From momentum considerations the thrust dT on an annulus of the 
rotor disk 2«r dr is related to the induced velocity Y±    at the rotor 
element by the expression 

dT 
kixpr  dr 

= Vi(Vi + V sin ay) (112) 

But 

'Vi + V sin Oy = U sin 0V (113) 

Thus 

dT 

4npr dr 
(u sin 0v)(u sin 0V - V sin c^)        (ll4) 
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The thrust of the annulus is also equal to the thrust acting on the 
portions of the blades within the annulus which is 

dT = I 'pbU2ccz cos 0V dr (115) 

where 

cz =■ a sin o^ = a (sin 0y cos 0V + cos 0y sin 0V)      (ll6) 

Thus 

dT = I pab(u cos 0v)[sin 0y(u cos 0V) + cos 0v(u sin 0V)] c dr (117) 

Substituting the above values of dT in equation (114) and solving for 
U sin 0V 

U sin 0V  /v        aba 

ÜB. = (; 
a + „^ ^ 

2   16 

rva  aba-~ a + —^ cos 0, 
12  abcrT 

2    16 "8~~ x sin ev (118) 

where 

va = 
V sin (Xy 

(119) 

JTR 
(120) 

Then from equation (11.7) 

2C, 

ab 
T a r 

Jx-, 
x sin 0y + 

^U sin 0^ 

k.  HR 
cos 0, arx dx (121) 
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U sin 0V 
where the value of   at x is given by equation (ll8), 

flR 
Similarly, from blade-element considerations 

2CQ T1 /U sin 0v\f / U sin 0 ' 
arx dx + 

cdr 

sin ar 
x sin 6 

/Ü sin 0y\ z) cos eAr 
fiR       I v 

CT-rX^   dx (122) 

Cdr Cdr ■>o uo where the values of    —     are obtained from a plot of    ■—:     against 
sin <xr sin ar 

ar for the blade airfoil at values of <xr given by the relation 

04. 0V + tan" 
l/U sin 0V\ 

(123) 

If it is necessary to take into account"the rotation of the slip- 
stream for large rates of vertical ascent or the propeller condition, 
this may be accomplished to a first approximation by using an effec- 
tive ft, fte, in every case where 

Qc (l - I  Gp) (124) 

The geometry of the above equations is exact and they are convenient 
for graphical or numerical integration on account of the repetition of 
factors. 

Neglecting the induced radial and tangential velocity components, 
the optimum blade-angle distribution for minimum induced power and a 
given blade-chord distribution and nondimensional axial flight-path 

U sin 0V 
velocity va may be obtained by setting  ?r=—- equal to the constant 

ÜR 
value X^. giving 
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sin ev = 
K(K - va)x 

k(v + x >H 1    + 
(v2 + ^)[k2- (^-»«og 

(K - va)  x 2^2 
(125; 

where 

k = 
aha-. 

(126) 

and 

3L   - IS 
2 y + 2 CT (127) 

The optimum chord distribution for a given desired constant value of cj 
along the blade and the same restrictions is 

ar = 
8\r(V " va) 

i^7 bcz\|X,r
2 + x2 

(128) 

For this optimum chord distribution, the optimum distribution of 0V 
reduces to 

XC-; 
sin 0, 

i|V 
2   2 + yr 

1 + 

\ 

1 + a2^-v2 - cl2{\2 +  x2) 
2.2 c7 x 

(129) 

. For calculations where the flight-path velocity and equilibrium 
value of Crp are known or can be estimated, the following procedure 
may be followed: 

(1) Calculate and plot the radial distribution of ar 

(2) "Calculate the effective value of CT and va where 

Cqi = Cqif£ 

vw 
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(3) Calculate the approximate value of AQ from equation (72) 
which for these flight conditions reduces to 

sin A0 £ 

f2CTe 
V~a¥" ~  g3s  - V2c 

(a3c  " V2s) 

(k)   Calculate and plot the radial distribution of 0V = A0 + ©t 
for the value of A0 obtained under item (3) and two lower values at 
increments of several degrees 

(5) Calculate and plot the radial distribution of . U sin 0v/fieR 
for the above distribution of 6V from equation (ll8) using ß = Qe 
throughout 

(6) Calculate and plot the radial distribution of the integrand 
of equation (l2l) for the three values of A0 and graphically or 

numerically integrate for the values of 2CTe/ab corresponding to the 

three values of AQ. 

(7) Obtain the correct value of AQ from a. plot of CT  against AQ 

(8) Calculate and plot the radial distribution of the integrand of 
equation (122) for the three values of A0 and graphically or numerically 

integrate for the values of 2Cg/b corresponding to the three values 

of AQ 

(9) Obtain the equilibrium value of C^ at the equilibrium value 

of AQ from a plot of CQ6 against AQ 

(10) Calculate the equilibrium value of CQ = Cn (—) 

Comparison of Experimental and Calculated Values of Parameters 

Table 6 shows a comparison of the experimental data of reference 2 
for those runs where CT Z  0.005^5 with the values calculated by the 

approximate blade-element equations of this report.  The blade-element 
lift-curve slope was assumed by the authors to have been a = 6.5 from 
the experimental results of reference 6.  The values of eQ,     e-,, 
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and e2 were evaluated for the points c^ = 0.0090, 0.0105, and 0.0170 

at cj  = 0, 0.5, and 1.0, respectively, from figure 19 of reference 6. 

The exact solutions for the various parameters differ from the 
tabulated approximate solutions by a negligible amount for these heli- 
copter flight conditions. 

A consideration of the results presented in table 6 would 
indicate that much of the remaining discrepancy between experimental 
and calculated blade angles and torque coefficients may be due to the 
neglect, in the present calculations, of the effects of the rotor induced 
velocity on the lift and drag of the fuselage. 

It may be noted that the longitudinal component of the angle 

tan"!/-*— ) between the rotor resultant force and the thrust component 
V
2C
T/ 

normal to the tip-path plane fs very small for all these helicopter 
flight conditions and that the direction of the resultant is inclined 
forward for those flight conditions where there is a net downflow through 
the rotor. The inclinations of the tip-path plane to the horizontal 0X 
and 8y are also small angles and, consequently, for many unaccelerated- 
flight helicopter calculations the rotor resultant force can be assumed 
to be perpendicular to the tip-path plane and the thrust equal to the 
gross weight without introducing serious errors. 

CONCLUDING DISCUSSION 

Simple relations for the rotor blade angles and the values of CQ, 

CX, and Cy, derived upon the assumption of a triangular distribution 
of blade-element circulation along the radius and a sinusoidal variation 
with azimuth angle in conjunction with a linear variation of profile 
drag with lift, would appear to be useful for helicopter and converta- 
plane performance estimation and the determination of the equilibrium 
angle of attack and lateral tilt of the tip-path plane. 

The blade-element equations, based upon the relation that 
cl =  a sin ar = a(sin Gv  cos 0V + cos 0V sin 0V), and the anc and 

ffns functions of the blade-chord and blade-twist distribution afford 
a reasonably exact and concise treatment of the geometry and should be 
useful for convertaplane as well as helicopter calculations. 
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The use of the empirical relation c^ = €Q + ei sin ar +.62 
cos ar> 

rather than the usual expression that c<i0 = og + 8]_ar + &2ar , consid- 

erably simplifies the equations for the in-plane forces and moments and 
presents a sufficiently exact solution of the geometry for helicopter 
calculations. - 

For convertaplane calculations, the approximation that 

cd0 = 
ei sin Oj. + ?2 cos "^r allows an exact treatment of the geometry 

and should be a sufficiently accurate expression for CJ  at the larger 

advance ratios where the effects of the profile drag become of less 
,relative importance. 

The larger sources of the remaining errors in the blade-element 
analysis probably have the following order of importance for contemporary 
helicopters: 

(l) The neglect of the effects of blade-element stall implied" in 
the relation that C£ = a sin Oj, 

(2)sThe neglect of the effects of blade flexibility 

(3) The neglect of the radial variation in the normal component 
of the induced velocity 

(k)  The neglect of the effects of compressibility on the tip 
sections of the advancing blade. 

Georgia Institute -of Technology 
Atlanta, Ga., May 15, 1951 
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TABLE 1 

VALUES OF cr  FOR BLADES WITH LINEAR TAPER 

Interpolate for values for given t; aQ = —; 

'tip t = -=±£ _ ij  c = c0(l + tx 3 
t al/a0 02/cro ff3/a0 a4/CT0 

x1 =  0.15 

0 
-1 

0.8500 
.3612 

0.4888 
.1566 

0.3322 
.0823 

0.2499 
.0499 

x± =  0.20 

0 
-1 

0.8000 
• 3200 

0.48oo 
.1493 

0.3307 
.0811 

0.2496 
.0497 
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TABLE 2 

VALUES OF a__ FOR BIADES WITH LINEAR TAPER, LINEAR 'nc 

TWIST, AND x1  = 0.15 

Interpolate for values for given t first and then for values for 

given 0-,; reference station for AQ at 

t = ^i£ - 1; c = co(i + tx); et = elXJ 

0; o0 = -a; 

el 
CTlc/a0 CT2c/0O ff3c/ao a4c/ao 

(cleg) 
t  = 0 t = -1 t  = 0 t = -1 t = 0 t = -1 t  = 0 t = -l 

0 0.8500 0.3612 0.4888 0.1566 0.3322 0.0823 0.2499 0.0499 
-1* .8492 .3611 .4882 .1565 .3317 .0822 .2495 .0498 
-8 .8468 .36o4 .4864 .1561 .3303 .0820 .2483 .0497 

-12 .8427 • 3594 .4833 .1555 .3278 .0816 .2462 .0494 
-16 .8371 .3580 .4791 .1546 .3244 .0810 .2434 .0490 
-20 .8299 .3562 .4737 .1536 .3201 .0803 .2398 .0485 
-24 .8211 • 3541 .4671 .1522 .3148 .0794 .2354 .0478 
-28 .8108 .3515 .4594 .1507 .3087 .0784 .2303 .0471 
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TABLE 3 

VALUES OF a__ FOR BLADES WITH LINEAR TAPER, LINEAR ns 

TWIST, AND x    = 0.15 

Interpolate for values for given t first and then for values for 

given 0-,; reference station for A_ at x = 0; crn = -°-; 
itR' 

ctip - 1;  c = c0(l + tx).j. 0t = 6-LXJ 

0 
1 

(cleg) 

als/CT0 ' 02s/aO a3s/CT0 ö4s/ao 

t .= 0 t = -1 t = 0 t = -1 t = 0 t =. -l t = 0 ■ t = -1 

0 
-4 
-8 

-12 
-16 
-20 
-24 
-28 

0 
-.0341 
-.0681 
-.1020 
-.1356 
-.1699 
-.2017 
-.2340 

0 
-.0109 
-.0219 
-.0327 
-.0435 
-.0531 
-.0650 
-.0756 

0 
-.0232 
-.0463 
-.0693 
-.0920 
-.1145 
-.1367 
-.1585 

0 
-.0057 
-.0115 
-.0172 
-.0229 
-.0284 
-.0341 
-.0396 

0 
-.0174 
-.0348 
-.0521 
-.0692 
-.0860 
-.1026 
-.1189 

0 
-.0035 
-.0070 
-.0104 
-.0138 
-.0173 
-.0206 

-.0239 

0 

-.0139 
-.0279 
-.0417 
-.0553 
-.0688 
-.0820 
-.0950 

0 
-.0023 
-.0047 
-.0070 
-.0092 
-.0115 
-.0137 
-.0159 
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TABLE 4 

VALUES OF cr   FOR BLADES WITH LINEAR TAPER, HELICAL nc 

TWIST, AND x±  = 0.20 

Interpolate for values for given t first and then for values of 

- cn 
given 0m; reference station for An at blade tip; a„ = —; 

c. 
«R' 

t  = 'tip 
- 1;     c = cQ(l + tx);    9t  = tan_1fi tan 9mj 

(deg) 

0lc /ao a2c/a0 3c /ao CT4c/ffo 

t  = 0 t = -1 t  = 0 t = -1 t = 0 t = -1 t = 0 t = -l 

0 0.8000 0.3200 0.4800 0.1493 0.3307 0.0810 0.2496 0.0497 
-4 .7906 .3144 .J+762 .1474 .3287 .0803 .2484 .0493 
-8 .765^ .3002 .4651 .1419 .3233 .0782 .2451 .0483 

-12 .7305 .28o4 .4500 .1351 • 3149 .0751 .2398 .0468 
-16 .6907 • 2591* .4313 .1270 .3042 .0714 .2328 .0448 
-20 .61*89 .2385 .4io4 .1185 .2919 .0674 .2244 .0427 
-24 .6065 .2184 .3882 .1100 .2782 .0632 .2151 .o4o4 
-28 .5645 .1994 .3651 .1016 .2635 .0590 .2046 .0379 
-32 .5231 .1815 .3416 .0934 .2481 .0547 .1935 • 0354 
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TABLE 5 

VALUES OF ans FOR BLADES WITH LINEAR TAPER, HELICAL 

TWIST, AND xx = 0.20 

Interpolate for values for given t first and then for values for 

given 0T; reference station for AQ at blade tip; an = 0 " W 
'tip 

- 1;  c = c0(l + tx); 0+ tan ( — tan 0, .-1/1 ä 
0rn 

(deg) 

als/a0 a2s/a0 ff3s/a0 a4s/ffo 

t  = 0 t = -1 t  = 0 t = -l t'= 0 t = -1 t = 0 t = -1 

0 
-k 
-8 

-12 
-16 
-20 
-2k 
-28 
-32 

0 
-.1106 
-.2121 
-.3005 
-.3761 
-.U05 
-.4956 
-.5^30 
-.5838 

0 
-.0553 
-.10^5 
-.U52 
-.1780 
-.2044 
-.2256 
-.2^28 
-.2570 

0 
-.0553 
-.1076 
-.1553 
-.1981 
-.2365 
-.2701 
-.3002 
-.3269 

0 
-.0220 
-.0^22 
-.0596 
-.0744 
-.0872 
-.0972 
-.IO60 
-.113^ 

0 
-.0333 
-.0654 
-.0957 
-.1237 
-.1494 
-.1728 
-.1941 
-.213^ 

0 
-.0103 
-.0200 
-.0287 
-.0364 
-.0431 
-.0490 
-.054o 
-.0584 

0 
-.0230 
-.0454 
-.0669 
-.0872 
-.1062 
-.1239 
-.l4oi 
-.1551 

0 
-.0056 
-.0110 
-.0160 
-.0205 
-.0245 
-.0281 
-.0313 
-.03^2 
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TABLE 7 

VALUES OF    X± = -¥-ir ~       V     FOR GIVEN VALUES OF    X*  - "  'C---3^- 

AND    X, 
V sin 0^/2 -  3(V 

flR 

*z 
*x 

0 .   0.1(0 O.60 0.80 1.00 1.20 1.4o 1.60 I.80 2.00 

2.4o ao.96o too.740 b0.580 0.481 0.457 0.433 0.410 0.390 0.371 0.349 

2.20 al.i4 b.88 b.68 •543 .509 .476 .444 .418 • 392 .369 
2.00 al.36 b1.07 t>. 82 .630 .574 .526 .484 .450 .418 .389 
1.80 al.65 bl.34  ' bl.03 .767 .659 .585 .529 .483 .445 .410 

I.60 a2.26 *1.8l tol.42 1.000 .769 .654 • 577 .518 .472 .432 

1.40 a2.44 b2.05 toi.77 1.220 .896 .727 .627 .550 .496 .452 

1.20 a2.24 b1.88 toi.65 1.25 .976 .789 .668 .582 .520 .470 

1.00 a2.01 b1.72 b1.52 1.21 1.000 .824 .698 .613 .539 .485 

.80 a1.80 b1.56 bi.39 1.15 .984 .833 • 713 .621 .552 .494 

.60 al.6o bl.l(l b1.27 1.07 .947 .820 .712 .625 .556 ■ .500 

.4o al.l(2 toi.28 toi.16 1.00 .897 .792 .698 .619 .554 .500 

.20 a1.25 b1.15 
bl.o6 .924 .842 .756 .677 .606 .547 .494 

0 a1.10 b1.02 to.96 

0 1.000 . .961 .914 .854 .786 .715 .648 .586 •533 .486 
-.20 • 905 .874 .833 .787 .731 .673 .613 .564 .516 .474 
-.40 .820 .796 .765 .724 .680 .632 .584 •539 .497 .461 
-.60 .744 .725 .699 .668 .630 .592 .551 • 513 .477 .443 
-.80 .677 .658 .640 .615 .586 .553 .520 .487 .453 .426 

-1.00 .618 .605 .588 .569 .544 .517 .489 .462 .435 .409 
-1.20 .566 • 556 .543 .526 .506 .484 .460 .433 .413 .392 
-1.1(0 .521 .512 .501 .488 .472 .453 .433 .413 • 394 • 374 
-I.60 .1(81 .473 .464 .454 .440 .426 .4o8 • 391 • 374 .358 
-I.80 .445 .439 .432 .424 .411 .399 .385 • 371 • 356 .341 
-2.00 ,4l4 .1(09 .403 .395 .386 .376 .364 • 352 • 339 .326 
-2.1(0 .362 • 358 • 355 • 350 .342 • 334 • 327 .318 .308 .298 
-2.80 .320 .318 .316 • 311 .306 .301 .294 .287 .280 .273 
-3.20 .287 .284 .282 .280 .276 .272 .267 .262 .256 .250 
-3.6O .259 .257 .256 .254 • 251 .248 .244 .24o .236 .231 
-4.00 .236 .235 .234 .233 .230 .227 .225 .223 .221 .214 
-5.00 .193 .192 .192 .191 .189 .187 .186 .184 .182 .180 

•■ -6.00 .162 .162 .162 .161 .160 .159 .158 .157 .156 .155 
-8.00 .123 .123 .123 .122 .122 .122 .121 .121 .120 .120 

-10.00 .100 .100 .100 .100 .099 .099 .099 .098 .098 • 097 

Experimental. 

"Estimated. 
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TABLE 7 - Concluded 

VALUE :s OF   \< = —I 1      ßRj 
^      FOR 

Cm 

V sin a,rl|£ 

GIVEN 1 /ALUES C )F     ^  = ^f' -  3Hv2 

CT 

2 - 3mr 
2 

AND    X„  =   - - - Concluded 
" 7R      | cT 

*-z 
\& 

2.1+0 2.80 3.20 3.60 4.00 5.00 6.00 8.00 10.00 

2.4o 0.315 0.285 0.261 0.239 0.210 0.184 0.156 0.120 0.097 
2.20 .329 .295 .267 .245 .224 .186 .158 .121 .098 
2.00 • 344 .305 .275 .250 .228 .188 .159 .122 .099 
1.80 .357 • 315 .282 .256 .233 .191 .161 .122 . .099 
1.60 .370 .325 .289 .260 .237 .192 .162 .123 .099 
i.4o .384 .333 .295 .265 .240 .195 .163 .124 .099 
1.20 • 395, .341 .301 .269 .243 .196 .164 .124 .099 
1.00 .4o4 .347 .306 .272 .246 .197 .165 .124 .100 

.80 .413 .352 .309 .276 .248 .198 .166 .125 .100 

.60 .14-15 • 356 .313 .277 .249 .199 .166 .125 .100 

.1*0 .416 .357 • 3l£ .278 .250 .200 .167 .125 .100 

.20 .414 • 357 .312 .278 .250 .200 .167 .125 .100 

0 .410 .354 .310 .278 .250 .200 .167 .125 .100 
-.20 .4o4 .350 • 309 • 275 .248 .199 .166 .125 .100 
-.4o • 395 .345 .305 .273 .247 .198 .166 • 125 .100 
-.60 .386 • 339 .301 .270 .245 .197 .165 .125 .100 
-.80 .374 .331 .296 .267 .242 .196 .165 .125 .100 

-1.00 .362 .323 .290 .262 .239 .194 .164 .124 .099 
-1.20 .349 .314 .284 .258 .235 .192 .163 .124 .099 
-i.4o .337 • 305 .277 .252 .231 .190 .161 .123 .099 
-1.60 .325 .296 .270 .247 .227 .188 .160 .122 .099 
-1.80 .312 .286 .263 .242 .223 .186 .158 .121 .098 

-2.00 .300 .277 .255 .236 ...219 .183 .157 .121 .098 
-2.40 .278 .259 .241 .224 .209 .178 .153 .119 .097 
-2.8O .258 .242 .227 .213 .200 .172 .149 .117 .096 
-3.2O .239 .226 .214 .202 .191 .166 .145 .115 .095 
-3.6O .222 .216 .201 .191 .182 .l60 .141 .113 .094 

-it-.OO .207 .198 .189 .181 .173 .154 .137 .111 .093 
-5.00 .175" .170 .164 .159 .155 .139 .127 .105 .089 
-6.00 .152 .148 .144 .140 .137 .126 .117 .09^ .085 
-8.00 .-118 .120 .115 .112 .ill .105 .093 .088 .078 

-10.00 .096 • 095 .094 .093 .092 .089 .085 .078 1070 
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Z(T,-Q,fl,i|r) 

A 
Y(Fy,M7,c»y,e7) 

X(Fx,Mx,a>x,ex) 

Front view 

Horizontal 

Side view 

Figure 1.- Tip-path plane or axes of virtual rotation. 
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2.0 

1.6 

 ^\ 

.8 

.h 

0 

From test data for 
NACA 0015;  effective 
Reynolds number,- 1,230,000 

40 60 80 100 120 

Angle of attack,    a,   de£ 

Figure 3-- Comparison of expressions  for    c^. 
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